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This is a study of the potential of neural networks built by using different transfer functions

(sigmoidal, product and sigmoidal–product units) designed by an evolutionary algorithm to quantify

highly overlapping electrophoretic peaks. To test this approach, two aminoglycoside antibiotics,

amikacin and paramomycin, were quantified from samples containing either only one component or

mixtures of them though capillary zone electrophoresis (CZE) with laser-induced fluorescence (LIF)

detection. The three models assayed used as input data the four-parameter Weibull curve associated

with the profile of the electrophoretic peak and in some cases the class label for each sample

estimated by cluster analysis. The combination of classification and regression approaches allowed

the establishment of straightforward network topologies enabling the analytes to be quantified with

great accuracy and precision. The best models for mixture samples were provided by product unit

neural networks (PUNNs), 4:4:1 (14 weights) for both analytes, after discrimination by cluster

analysis, allowing the analytes to be quantified with great accuracy: 8.2% for amikacin and 5.6%

for paromomycin within the standard error of prediction for the generalization test, SEPG. For

comparison, partial least square regression was also used for the resolution of these mixtures; it

provided a minor accuracy: SEPG 11.8 and 15.7% for amikacin and paramomycin, respectively. The

reduced dimensions of the neural networks models selected enabled the derivation of simple

quantification equations to transform the input variables into the output variable. These equations

can be more easily interpreted from a chemical point of view than those provided by other ANN

models. Copyright # 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A variety of approaches are found in the literature for

resolving and quantifying overlapped chromatographic

bands using chemometric methods, in the majority of the

cases based on a two-dimensional array of data, such as that

generated by high performance liquid chromatography

(HPLC) with diode-array detection (DAD) [1–9]. In recent

years, capillary zone electrophoresis (CZE) has gained in

popularity as an alternative to HPLC for routine analysis,

and its application is widespread in many fields of analytical
ndence to: M. Silva, University of Cordoba, Analytical
, Cordoba, Spain.
1sirom@uco.es
chemistry. Despite its higher resolution with respect to

HPLC, sometimes the complete separation of sample

components is not fully achieved. Nonetheless, the quanti-

fication difficulties from poorly resolved peaks may be

overcome mathematically by using chemometric techniques.

Multivariate curve resolution methods [10–12], augmented

iterative target transformation factor analysis [1], wavelet

transforms [13] and second-order derivative electropher-

ograms [14,15] are, among other approaches, the most

recently reported for this purpose using the second-order

data from CZE–DAD. In the last decade, artificial neural

networks (ANNs) have shown their unique merits regard-

ing the great variety of chemometric approaches reported

for the classification and regression purposes in many

fields of analytical chemistry. Particularly in separation
Copyright # 2007 John Wiley & Sons, Ltd.
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science, ANNs have been used mainly as tools to optimize

the experimental conditions for carrying out separation

and, to a lesser extent, for quantification in overlapped

HPLC [16–20] peaks and, more recently, for unresolved

peaks in CZE [21–25].

Several ANN models have been used to achieve regression

analysis, including quantification in overlapped peaks, in

analytical chemistry. Although multilayer perceptron (MLP)

modeling with sigmoidal unit basis functions (SU) as transfer

functions is the most widely used approach [16,20–23], radial

basis function (RBF) neural networks [19,21] and, more

recently, multiplicative neural networks [26], especially the

so-called product unit neural networks (PUNNs) [17,27,28]

modeling with product unit basis functions (PU) are other

interesting choices depending on the analytical problem

addressed. In addition to this type of models where all the

nodes of the hidden layer have the same type of activation/

transfer functions, hybrid models have also been proposed,

where different activation/transfer functions are used for the

nodes in the hidden layer.

In this context, it is worth emphasizing the papers by Duch

and Jankowski [29] which propose different transfer

functions for the nodes in the hidden layer and those by

Cohen and Intrator [30,31], supported on the duality between

functions based on projection, (SU, PU, etc.) and on kernel

typology (RBF). The hybridization of models has been

justified theoretically by Donoho [32] who demonstrated that

any continuous function can be decomposed into two

mutually exclusive functions, such as radial and crest (based

on the projection) ones. But to the best of our knowledge

there is not any theoretical work associated with the

hybridization of the SU/PU in neural networks. Although

theoretically this decomposition is justified, in practice it is

difficult to separate the different locations of a function and

to estimate them by means of a combination of RBFs, and

then to estimate the residual function by means of a

functional approach based on projections without getting

trapped in local optima in the procedure of minimization of

error by using gradient methods [33]. A similar idea has been

considered in this work: neural network architecture with

several transfer functions based on projections.

Thus, this paper deals with the evaluation of different

evolutionary ANN models based on SU, PU and a

combination of both basis function (SPU) neural networks

as powerful tools for the quantification of analytes that

provide highly overlapping chromatographic peaks by using

first-order data. To test proposed approaches, two amino-

glycoside antibiotics, amikacin and paramomycin, were

quantified in mixtures using only the analytical information

provided by their overlapped CZE peaks (ti;Sti : first-order

data) registered with a laser-induced fluorescence (LIF)

detector. Further details on the analytical methodology are

described in a previous paper [34]. Several chemical

and chemometric strategies were merged in the proposed

approaches:
1. T
Co
he methodology was extended to more practical and real

situations considering the possibility that the analyzed

samples could either contain only one component or

mixtures of them.
pyright # 2007 John Wiley & Sons, Ltd.
2. A
 classic procedure was used for classification, such as

linear discriminant analysis (LDA) [35], in order to differ-

entiate the three types of analyzed samples.
3. M
odels of networks with a limited number of inputs were

tested. To do so, as in previous papers [16,17], the network

inputs were estimated by the Levenberg–Marquardt

method in the form of a four-parameter Weibull curve

associated with the profile of the electrophoretic band.
4. A
n additional input was introduced, namely the label

associated with the class of sample analyzed, in order

to improve the capacity of generalization of the models;

this proposal constitutes the first precedent on the joint

employment of classification and regression approaches

for resolving overlapped chromatographic peaks.
5. T
he potential of ANNs with hybrid models for activation/

transfer functions was evaluated. This paper shows the

first research on the use of hybrid models associated with

two specific types of functions as functional projection

approximators: product and sigmoidal functions, yielding

the SPUNNs hybrid model.
6. E
volutionary algorithms were employed for the optimiz-

ation of the parameters of the model as an alternative to

the classic choice based on gradient methods, considering

the complexity of the error surfaces obtained by minimiz-

ing the squared errors derived from the fitting of the

regression models in the training set.
2. THEORY

The aim of the proposed approach is to evaluate the potential

of different ANN models: SU, PU and SPUNNs, for the

quantification of overlapped chromatographic bands, con-

cretely unresolved CZE peaks, in order to predict the

contribution of each component to the overall analytical

signal.

2.1. Selection of ANN inputs
The first step of the approach consists of extracting the

information from the analytical response (CZE peak) in order

to select the inputs for the ANNs. Upon examining the

responses (individual and mixture samples), it can be

observed that profiles of the CZE peaks (ti; Sti ) were

accurately fitted by least-square regression to a four-

parameter Weibull curve defined by Sm (peak height), B

(dispersion of Sti values from Sm), C (associated to the

inflection points of the curve and defining the concavity

and convexity regions) and tm (residence time). In addition,

the samples were also classified into three categories by

using LDA. Classes were defined according to the

composition of the samples as follows: G1, amikacin; G2,

paromomycin; and G3, mixtures of both antibiotics. In some

studies, the label associated with the class was used as

input for ANN models.

2.2. ANN models
ANNs modeling with SU, PU and hybrid SPU as transfer

functions were used and their features compared in this

work. Taking into account that the latter is the most novel

approach, its foundation is now described in detail.
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Figure 1. Functional scheme of the neural network based on

sigmoidal and product units. a0; . . . . . . ;am1
and b0; . . . . . . ; bm2

are the regression coefficients of the model. Other symbols

are defined in the text.
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Although the use of PUNNs in this context is very recent, the

description of its theoretical basis is outside the scope of this

paper, although some current papers from the authors can be

considered for further explanations [17,27,28].

To estimate the concentrations of the antibiotics in the

samples by using SPUNN models, we consider standard

regression formulation under a general setting for predictive

learning. In the regression formulation, the goal of learning is

to estimate an unknown (target) real-valued function g(x) in

the relationship

y ¼ gðxÞ þ " (1)

where e is an independent and identically distributed zero

mean random noise, (whose distribution can depend on x,

the distribution of x in the training set also being unknown), x

is a multivariate input and y is a scalar output. The estimation

is made based on a finite number (n) of samples (training

data): ðx1;y1Þ;l ¼ 1; 2; . . . :;n. To solve regression problems,

the family of functions f(x, w) (w is a set of parameters of f)

used in the approximation should be previously determined

by using a learning method that selects the best model, f(x,

w0), from f(x, w); finally, the quality of the approximation can

be expressed by the loss (discrepancy) measure L(y, f(x, w)),

the squared error being a common loss function used for

regression.

The linear models given by f(x, w)¼wTx are the simplest

ones used to solve regression problems. It is extremely

unlikely that the true function g(x) is actually linear in x.

Normally, g(x) is nonlinear and non-additive in x, and

representing g(x) by a linear model is usually a convenient,

and sometimes necessary, approximation. Another class of

useful approximation can be expressed as a linear basis

expansion

fðxÞ ¼
XM
j¼1

bjBjðx;wjÞ (2)

where Bjðx;wjÞ are a suitable set of functions or nonlinear

transformations of the input vector x ¼ ðx1;x2; . . . ;xpÞ;
B0ðx;wjÞ ¼ 1 in order to consider bias in the model; bj are

the coefficients from lineal combination that are estimated

from the data; wj ¼ ðwj1;wj2; . . . ;wjpÞ are the parameters

associated with the basis functions; and M is the parameter of

regularization of the model, which is associated with the

number of basis functions that are necessary and sufficient to

minimize some definite function of the error on this matter.

In this work, two types of basis functions have been used,

namely SU function

Bjðx;ujÞ ¼
1

1 þ e
�� uj0þ

Pp
i¼1

ujixi

� � ; j ¼ 1; . . . ;m1 (3)

and PU function

Bkðx;wkÞ ¼
Yp
i¼1

xwki
i ; k ¼ 1; . . . ;m2 (4)

whose linear combination provided the hybrid function

(SPU) used for estimation:

fðxÞ ¼ a0 þ
Xm1

j¼1

ajBjðx;ujÞ þ
Xm2

k¼1

bkBkðx;wkÞ (5)
Copyright # 2007 John Wiley & Sons, Ltd.
The method involves finding a sufficient number of basis

functions (architecture) providing a type of approximate

universal function for the estimate function, in such a way,

and taking into account that both types of basis functions are

universal approximators [17], that for every e> 0 it should be

possible to find a value of m1 and m2 as well as the estimators

of the parameters a0;aj;bk; ûj and ŵk for j ¼ 1 ; . . . ;m1 and

k ¼ 1 ; . . . ;m2, that hold:

fðxÞ � a0 þ
Xm1

j¼1

ajBjðx;ujÞ þ
Xm2

k¼1

bkBkðx;wkÞ

0
@

1
A

������
������ < " (6)

This optimization problem is similar to that involved in the

‘projection pursuit’ regression model with the special feature

being that the ‘ridge functions’ are exclusively of two types.

Evolutionary algorithms similar to those reported by

Angeline et al. [36], Yao and Liu [37] and Garcı́a et al.[38]

and that have been used in this work to obtain the ANN

architecture and to estimate model coefficients.

This kind of function topology can be represented by an

ANN architecture, as shown in Figure 1. The network has k

inputs that represent the independent variables of the

model, five in our problem, m1 þm2 ¼ 6 nodes in the hidden

layer and one node in the output layer. The activation of the

jth sigmoidal and kth product nodes in the hidden layer is

given by Equations (3) and (4), respectively; where uji is the

weight of the connection between input node i and hidden

sigmoidal node j and wki is the weight of the connection

between input node i and hidden product node k. The

activation of the node in the output layer is given by

Equation (5); where aj and bk are the weights of the

connection between the hidden sigmoidal node j or product

node k and the output node. The transfer functions of each

product node in the hidden layer and the output node for

regression are the identity function. In this way, each

function of the f(x, w) family is represented by the structure

of the network.
J. Chemometrics 2007; 21: 567–577
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2.3. Evolutionary algorithm
The optimization of the SPUNN topology consisted of the

search for the structure of the sigmoidal and product unit

base functions that best fit the data of the training set, by

determining the values of m1 and m2 associated with the

optimum number of base functions for each type involved.

On the other hand, the estimation of the weights of the

network is closed to the evolution of the uj and wj vectors,

which determine the coefficients in each base function, as

well as with aj and bk, coefficients involved in the linear

combination of the base functions. The population is

subjected to the operations of replication and structural

and parametric mutations. The general structure of the

algorithm is the following:
(1) G
Cop
enerate the initial population.
(2) R
epeat until the stopping criterion is fulfilled.
(a) C
alculate the fitness of every individual in the popu-

lation.
(b) R
ank the individuals regarding their fitness.
(c) T
he best individual is copied into the new population.
(d) T
en per cent of the best individuals in the population are

replicated and substitute the 10% of worst individuals.
(e) A
pply parametric mutation to 10% of the best individ-

uals.
(f) A
pply structural mutation to the rest of the 90% of

individuals.
For the generation of the initial population, the algorithm

begins with the random generation of a larger number of

networks than the number used during the evolutionary

process. Initially, we generate 10 000 networks from which,

the best 1000 with major fitness are extracted, being it the

population size along the evolutionary process. For the

generation of a network, the number of nodes in the hidden

layer is taken from a uniform distribution in the interval [0,6],

for m1þm2¼ 6, where m1 and m2 are related to the maximum

number of hidden nodes in each base function in the

population. The number of connections between each node

of the hidden layer and the input nodes is determined from a

uniform distribution in the interval [0,k], where k is the

number of independent variables. There is always at least

one connection between the hidden layer and the output

node. Once the topology of the network is defined, each

connection is assigned a weight from a uniform distribution

in the interval [�5,5] for the weights between the input and

hidden layers, and the same interval for the weights between

the hidden layer and the output node. Two types of

mutations are performed in the algorithm: parametric and

structural. The parametric mutations affect the weights of the

network and the structural ones affect to the network

topology (hidden nodes and connections). The severity of a

mutation is dictated by the function’s temperature T( f(x))

given by:

TðfðxÞÞ ¼ 1 � AðfðxÞÞ 0 � TðfðxÞÞ � 1 (7)

where AðfðxÞÞ is the fitness value of the f(x).

Let D ¼ ðxl; ylÞ : l ¼ 1; 2; . . . . . . ; nTf g be the training data

set, where the number of samples is nT. In this context, we

consider that the mean squared error MSE of an individual
yright # 2007 John Wiley & Sons, Ltd.
f(x) of the population is given by:

MSE ðfðxÞÞ ¼ 1

nT

XnT
l¼1

ðyl � fðxlÞÞ2 (8)

where the yl are the predicted values, whereas the fitness

function AðfðxÞÞ is defined by means of a strictly decreasing

transformation of the MSE:

A ðfðxÞÞ ¼ 1

1 þ 1

nT

XnT
l¼1

ðyl � fðxlÞÞ2

(9)

where 0<AðfðxÞÞ<1.

Parametric mutation consists of a simulated annealing

algorithm [39] based on a strategy that proceeds by

proposing jumps from the current model according to some

user-designed mechanism. Structural mutation is more

complex because it implies a modification of the structure

of the function. Structural mutation allows the exploration of

different regions in the search space and helps to keep up the

diversity of the population. Five mutations are applied

sequentially to each network. The first four are similar to the

mutations of the GNARL model reported by Angeline et al.

[36], namely: Node addition (NA), Node deletion (ND),

Connection addition (CA) and Connection deletion (CD); to

these, Node fusion (NF) is added. For each mutation (except

NF), there is a minimum value of 1 for adding or removing

nodes and connections, and a maximum value of 2 or 6 for

adding or removing nodes and connections, respectively.

In this hybrid implementation of the basis functions, when

a new node should be added to the networks, it is necessary

to estimate the probability for adding SU or PU. In this work,

we have considered with equal probability the addition of a

sigmoidal or product unit hidden node, thus the probability

is 0.5. These probabilities have been determined by means of

trial and error, and they are supported along the whole

evolutionary process. Finally, the stop criterion is reached

whenever one of the following two conditions is fulfilled: (i)

the algorithm achieves a given number of generations; (ii)

there is no improvement for a number of generations either

in the average performance of the best 20% of the population

or in the fitness of the best individual. For more details about

the evolutionary algorithm, see references [27] and [28].
3. EXPERIMENTAL

The whole procedure followed in this work is schematically

shown in Figure 2. To obtain analytical data, 55 electro-

pherograms provided by samples containing amikacin

(15–300mg/L), paromomycin (10–200mg/L) and mixtures

of both antibiotics with uniformly distributed concentrations

of them (30–300 and 20–200mg/L, respectively) were

prepared in duplicate, as described elsewhere [34], by using

35 mM sodium borate at pH 9.0 as background electrolyte.

The Levenberg–Marquardt algorithm was used to estimate

the four-parameter Weibull function (Ŝm; B̂; Ĉ and t̂m) associ-

ated with the profile of the electrophoretic peaks (conver-

gence of the iterative process was achieved with a tolerance

of 0.0001 and a maximum number of 100 iterations), whereas

LDA was used to classify these electrophoregrams in three

categories: G1 and G2 for samples containing only amikacin
J. Chemometrics 2007; 21: 567–577
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Figure 2. Flow diagram representing the whole analytical

protocol.

Quantification of highly overlapping capillary electrophoresis peaks 571
or paromomycin, respectively and G3 for samples containing

mixtures of both antibiotics, which were generically denoted

by Ĝ. Prior to use these parameters as inputs for the ANN

models, and in order to avoid saturation problems in the

sigmoidal basis functions (preventing driving the weights to

infinity) as well as to improve the learning process, each of

the input (parameters of the Weibull curve and the category)

and output (concentration of the antibiotics in the sample)

were scaled in the range [0.1, 0.9]; this process was also useful

for product basis functions because the lower bound is

chosen to avoid inputs values near to zero that can produce

very large values of the outputs for negative exponents,

whereas the upper bound is chosen to avoid dramatic

changes in the outputs of the network when there are weights

with large values (especially in the exponents). Thus, the

new scaled variables were expressed as follows:Ŝ�m; B̂
�;

Ĉ�; t̂�m and Ĝ� for the input variables and ½Â�� and ½P̂�� for

the output variables. For example ½Â�� is calculated as

follows:

½Â�� ¼ ½A� � ½Amin�
½Amax� � ½Amin�

� 0:8 þ 0:1 (10)

where [A] is the original concentration of amikacin in the

sample, [Amin] and [Amax] are the minimum and maximum

values and ½Â�� is the scaled concentration. After optimizing

the network models, estimations should be de-scaled accor-

ding to the same equation.

The experimental design was conducted using a holdout

cross-validation procedure where the size of the training set

was approximately 3n/4 and n/4 for the generalization set,
Copyright # 2007 John Wiley & Sons, Ltd.
where n¼ 110 is the size of the full data set. The algorithm

software for SU, PU and SPU neural networks was designed

in Java using the JCLEC library [40] and was run on a

portable PC Pentium IV compatible computer. The accuracy

of each model was assessed in terms of the SEP for the results

obtained for both data sets, that is SEPT for the training set,

and SEPG for the generalization set. In this way, the SEP was

calculated as:

SEP ¼ 100

Ci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðCi � ĈiÞ2

n

vuuut
(11)

where Ci and Ĉi are the experimental and expected values for

the antibiotic concentration in the mixture, Ci is the mean of

the experimental values of the training set, or of the

generalization set and n is the number of patterns used

(nT for the training set and nG for the generalization set).

Finally, the partial least squares (PLS) multivariate cali-

bration algorithm was provided by the Pirouette 3.11

software from Infometrix, Inc.
4. RESULTS AND DISCUSSION

In recent years, CZE is increasingly being considered as an

alternative to HPLC for the determination of a great variety

of compounds because it affords such significant benefits as

higher resolution, smaller sample requirements and shorter

analysis time. Despite this better resolution, CZE separation

is sometimes not accomplished and therefore chemometric

resolution is the suitable choice. Thus, it is understandable

that the quantitative resolution of overlapping electrophor-

etic peaks is an area of growing interest for analytical

chemists. ANNs have scarcely been used for this purpose

despite their higher discrimination power regarding other

current chemometric tools, even when using a smaller

amount of chemical information [16,17]. The goal of this

work was to evaluate different ANN models supported on

the use of three different transfer functions, namely SU, PU

and the hybrid model: SPU, for the quantification of

unresolved CZE peaks with a high degree of overlapping

by using analytical data provided by a single detector (LIF

detection), that is in the absence of spectral discrimination.

The approach was tested on the determination of amikacin

(A) and paromomycin (P), two aminoglycoside antibiotics

that cannot be resolved by CZE. After labeling the antibiotics

with sulfoindocyanine succinimidyl ester (Cy5), electrophor-

etic data were obtained by monitoring the single LIF signal

with a diode-laser detector. In order to extend the scope of

the proposed methodology to more practical situations, in

addition to the typical approach based on samples contain-

ing mixtures of both antibiotics, samples with only one

antibiotic (A or P) have also been considered. It is noteworthy

that the CZE peak showed a similar profile in all cases.

4.1. Selection of data and inputs
for ANN models
One important issue to be addressed in order to obtain

the best generalization capability of ANN models is the

composition of the data set used for training and general-
J. Chemometrics 2007; 21: 567–577
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ization. Two different data sets were tested from all the data

(110 samples) obtained by preparing 55 individual and

mixture synthetic samples in duplicate. Design A was

constituted by the whole group of the samples (individual

and mixtures) and design B only contains the samples with

mixtures of antibiotics. In both cases, the size of the training

and generalization sets was 3/4 and 1/4, respectively, of

the whole set: 110 and 72 samples for design A and B,

respectively. The so-called grid approach [41] was used for

sampling mixtures including those with higher and smaller

antibiotic ratios in the training set for assuring interpolation

in the generalization process. This state was also considered

for individual samples.

The selection of the multivariate input data for ANN

models is also of great relevance because they may cause

over-fitting of the trained networks. A small-sized neural

network will be less prone to overtraining noise or the

structure of the data in the training set, thus increasing its

generalization capacity over a new data set and allowing

users to gain knowledge from the trained neural network in

order to achieve a better understanding of how the network

solves the problem. As an alternative to principal component

analysis (PCA), the most common choice used for reducing

the data set, we have recently reported a useful approach

based on the modeling of the chromatographic profile to a

pre-determined function [16,17].

The electropherograms of pure amikacin, paromomycin and

a mixture of equal concentrations of both antibiotics are shown

in Figure 3A. As can be seen, the profiles of the CZE peaks were

very similar, which makes clear the high overlapping grade of

the bands of both antibiotics in mixtures samples. Although

the precision (expressed as relative standard deviation) for the

migration times in these electropherograms was within 1%

(similar to that reported by us in other works using CZE with

LIF detection) in order to improve their reproducibility,
Figure 3. (A) Typical electropherograms corresponding to pure and mixture

solutions of the assayed antibiotics: (1) 120mg/L of amikacin; (2) 180mg/L of

paromomycin and (3) mixture containing 120mg/L of amikacin and 180mg/L of

paromomycin. (B) CZE responses fitted to a four-parameter Weibull distribution

(o) Experimental data and (–) Weibull curve.
Copyright # 2007 John Wiley & Sons, Ltd.
migration times were corrected using as reference one peak of

the excess of Cy5 label.

The non-symmetric shape of these profiles suggests that

they can be modeled with a pre-determined function, being

the four-parameter Weibull distribution the best choice

because it provides the best regression coefficients in the

fitting. As stated above, the equation corresponding to this

function is defined by the following parameters: Ŝm (peak

height), B̂ (dispersion of Sti values from Sm), Ĉ (associated to

the inflection points of the curve) and t̂m (residence time).

Figure 3B shows the fit provided by the single four-

parameter Weibull distribution on the CZE peak profiles.

From these plots, it can be inferred that it was impossible to

fix a common residence time interval to select the portion of

the CZE profile subjected to fit for all samples. However, the

fit can be easily achieved by using the following process: (1) a

residence time interval of 10 data around the maximum was

selected to start the fit and (2) this interval was successively

increased by two data, one to every side of the interval. The

number of data (the portion of the CZE profile) that provided

the best fit, in terms of regression coefficient, was used to

estimate the four parameters of the Weibull distribution.

Upon examining the curves and from the estimated

statistical parameters shown in Table I, it can be concluded

that the four-parameter Weibull function is a fine tool for

modeling these CZE data.

In addition, a cluster analysis was also carried out using a

cross-validation holdout method (72 patterns for the training

set and 38 for generalization set) adopting these four-

parameters as variables for LDA. As can be seen in Table II,

the confusion matrixes provide a total correct classification

rate (CCR) value of 100 for both training and generalization

sets; this table also includes the standardized coefficients for

the canonical discriminant functions. From these results, the

following labels were assigned to the different classes: Ĝ1 ¼ 1
J. Chemometrics 2007; 21: 567–577
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Table I. Estimated parameters obtained in the modelling process of the electrophoretic peaks shown in Figure 3 by means of a

Weibull distribution

Sample

Parametersa

Ŝm B̂ Ĉ t̂m r

Pure amikacin 20.1� 0.6 0.106� 0.004 1.9� 0.1 6.203� 0.002 0.9889
Pure paromomycin 28.8� 1.6 0.15� 0.02 1.5� 0.2 6.275� 0.008 0.9540
Mixture of antibiotics 42.0� 0.8 0.245� 0.009 1.57� 0.08 6.277� 0.006 0.9855

a Mean� 1.96� SD; SD¼ standard deviation; r¼ regression coefficient.
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and Ĝ2 ¼ 2 for pure amikacin and paromomycin samples,

respectively and Ĝ3 ¼ 3 for samples containing mixtures of

the antibiotics. These labels were also used in some cases as

inputs in addition to the Weibull parameters.

4.2. Evaluation of the ANN models
To compare the predictive ability of ANN models in terms of

topology, number of connections, homogeneity (confidence

interval) and accuracy (SEPG), network models with a single

node in the output layer were designed (concentration of

antibiotic to be determined in the individual or mixture

sample). When using experimental design A, 4:5:1 and 5:6:1

architectures were chosen to start the model selection

processes, whereas a 4:4:1 topology was used for design B,

in all cases over 30 runs.

As can be seen in Table III, all models provided satisfactory

results in terms of accuracy (SEPG) and homogeneity

(confidence interval) for determining the concentration of

each antibiotic in the samples assayed. On comparing the

two designs, higher SEP values were achieved by ANN

models based on design A1 that uses all samples for training

and generalization sets without discrimination among them

through cluster analysis. In this case, only the four-

parameters of the Weibull curve were used as inputs and

the computational cost was clearly lower. When the cluster

analysis was carried out, two approaches have been

considered (see Figure 2): using the class label as input in

addition to the Weibull parameters (design A2) or employing

this information to create a new data set (design B)
Table II. Summary of the results obtained in the LDA of the

whole group of the samples (individual and mixtures) by using

the estimated four-parameters of the Weibull function as

variables

TR/PR

Training

FC %

Generalization

FC %G1¼ 1 G2¼ 2 G3¼ 3 G1¼ 1 G2¼ 2 G3¼ 3

A. Rate of the number of cases that were classified correctly
G1¼ 1 12 0 0 100 6 0 0 100
G2¼ 2 0 12 0 100 0 6 0 100
G3¼ 3 0 0 48 100 0 0 24 100
CCR 100 100

Variable Ŝm B̂ Ĉ t̂m

B. Standardized coefficients for the canonical discriminant functions
Coefficients of function 1 �0.374 0.600 2.414 2.437
Coefficients of function 2 0.810 �0.387 0.246 0.503

PR¼Predicted response; TR¼Target response; FC¼ False correct.
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containing only the mixture samples. Thus in the design

B, only the Weibull parameters were used as inputs, and the

determination of the concentrations of the antibiotic in the

individual samples was supported on the construction of the

classical calibration plot, such as Ŝm versus [antibiotic]

expressed in mg/L. From experimental results, the following

calibration plots can be drawn:

Ŝm ¼ ð1:8 � 0:4Þ þ ð0:117 � 0:002Þ ½A�; r ¼ 0:9965 (12)

Ŝm ¼ ð3:2 � 0:5Þ þ ð0:179 � 0:004Þ½P�; r ¼ 0:9951 (13)

As can be seen in Table III, ANN models based on design B

provided lower SEPG values, perhaps due to the biggest

homogeneity of the data sets because only mixture samples

were used for both training and generalization sets.

However, the use of design A2 cannot be discarded a priori

because it can be an acceptable choice depending on the

analytical problem addressed (higher SPGG values vs. lower

computational cost).

Regarding the type of ANN models tested, those based on

PU and SPU as transfer functions provided similar results for

the design A2, whereas models of PUNN provided lower

SPEG values for design B, especially for the determination of

P. This behavior is closely related to the composition of the

data set. In fact, the design A2 composed by individual

(linear) samples together with mixtures (nonlinear) is better

modeled by ANN using hybrid transfer functions, whereas

in the case of the design B (in the absence of individual

samples), PU transfer functions yielded a better modeling of

the chemical information.

In order to compare the quality achieved in each ANN

model for the resolution of mixtures of these antibiotics,

Table IV shows the results (in terms of concentration)

obtained applying the models to the synthetic mixtures

included in the generalization set of design B (see Figure 2).

In addition, this table also shows the results achieved when

the data were analyzed by using a classical standard

reference method such as PLS regression. For the construc-

tion of the different PLS models, the cross-validation method

was used and the number of significant factors in each case

were chosen as the lower number whose root mean standard

error (RMSE) of prediction by cross-validation was not

significantly different from the lowest RMSE value:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Ci � Ĉi

� �2

n

vuuut
(14)

Based on the absolute error of the prediction Ci � Ĉi

��� ���
obtained using the data reported by the ANN and PLS
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Table III. Accuracy (mean� 1.96�SD) and statistical results of the algorithm used with different experimental designs and

transfer functions (over 30 runs)

Analyte Starting topology

Connections SEPT SEPG

Mean� 1.96� SD Mean� 1.96� SD Best Worst Mean� 1.96� SD Best Worst

Design A1
A 4:5SU:1 26.5� 3.4 16.7� 9.9 10.1 31.7 19.4� 11.0 10.2 36.8

4:5PU:1 18.3� 3.0 14.1� 3.6 11.0 18.3 22.0� 14.1 13.2 38.8
P 4:5SU:1 26.1� 3.7 21.7� 3.7 17.6 25.1 18.0� 5.0 14.2 24.1

4:5PU:1 18.3� 2.9 20.4� 4.1 16.4 24.9 18.6� 6.6 13.5 27.5

Design A2
A 5(4þ 1):6SU:1 33.6� 4.2 12.7� 5.3 8.2 17.8 16.0� 6.8 10.0 23.6

5(4þ 1):6PU:1 23.8� 7.3 11.8� 3.9 8.9 16.1 20.4� 10.6 9.7 32.9
5(4þ 1):6SPU:1 33.3� 4.7 12.9� 4.3 10.1 18.6 19.7� 11.8 9.1 38.9

P 5(4þ 1):6SU:1 34.8� 5.4 16.7� 5.0 12.1 21.4 16.1� 3.6 13.2 20.1
5(4þ 1):6PU:1 23.2� 5.9 15.6� 4.8 10.7 20.4 18.2� 7.1 12.3 27.1

5(4þ 1):6SPU:1 32.5� 6.1 13.6� 4.2 9.4 18.1 16.6� 7.2 10.9 27.7

Design B
A 4:4SU:1 20.1� 3.8 7.2� 1.6 6.1 10.0 10.5� 3.2 8.4 15.3

4:4PU:1 13.8� 3.1 7.0� 1.3 5.8 8.5 10.5� 2.2 8.2 13.1
4:4SPU:1 19.2� 4.3 7.2� 1.9 5.4 8.9 10.2� 2.4 8.4 13.0

P 4:4SU:1 19.2� 4.9 8.3� 2.5 5.8 11.4 13.0� 6.7 6.5 22.2
4:4PU:1 13.6� 4.4 8.8� 3.1 5.8 11.4 12.5� 8.8 5.6 22.6

4:4SPU:1 19.2� 3.8 8.4� 3.2 6.0 12.9 12.3� 7.5 6.4 20.1
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models in Table IV, the analysis of variance (ANOVA)

technique was carried out to ascertain the statistical

significance of observed differences among the four corre-

sponding means, assuming that the absolute error values

obtained have a normal distribution. A Kolmogorov–
Table IV. Comparison of the quality achieved for the quantification

and the PLS me

½Â�=½P̂�

Amikacin

Added (mg/L)

Found (mg/L)

SUNN PUNN SPUNN PLS

8:1 240.0 231.9 244.8 241.2 238.2
8:1 240.0 240.9 253.8 250.5 248.1
1:2 30.0 23.1 27.9 25.8 7.8
1:2 30.0 31.5 33.6 35.7 30.0
4:2 120.0 102.6 103.5 104.1 118.5
4:2 120.0 108.3 110.4 108.0 122.4
6:2 180.0 173.4 176.7 171.9 190.5
6:2 180.0 170.4 174.9 167.1 185.4
8:2 240.0 225.6 226.5 222.6 241.8
8:2 240.0 234.3 235.2 231.9 249.9
1:4 30.0 40.2 47.7 39.3 32.1
1:4 30.0 38.7 46.2 42.0 39.0
6:4 180.0 195.9 197.4 201.3 213.9
6:4 180.0 196.2 196.8 200.7 212.4
4:6 120.0 115.5 119.1 115.5 122.4
4:6 120.0 114.6 117.3 121.5 129.0
6:6 180.0 166.8 163.5 179.7 186.3
6:6 180.0 174.0 169.8 192.3 198.9
4:8 120.0 115.5 115.8 118.5 124.8
4:8 120.0 112.8 112.2 117.6 125.4
10:8 300.0 264.9 273.0 268.8 252.6
10:8 300.0 270.3 275.4 277.8 260.1
4:10 120.0 130.2 116.4 120.9 137.1
4:10 120.0 124.2 111.0 117.0 134.1
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Smirnov test for normality was reached with p-values of

0.383, 0.389, 0.866 and 0.143 for amikacin and 0.538, 0.426,

0.235 and 0.885 for paramomycin, for SUNN, PUNN,

SPUNN and PLS models, respectively. The ANOVA

involved a linear regression model in which Ci � Ĉi

��� ��� was
of amikacin and paromomycin mixtures using the ANN models

thodology

Paromomycin

Added (mg/L)

Found (mg/L)

SUNN PUNN SPUNN PLS

30.0 16.2 26.1 18.9 10.2
30.0 17.7 27.6 21.6 9.3
60.0 75.9 66.6 77.4 82.2
60.0 66.0 61.2 71.7 73.8
60.0 71.1 72.3 75.0 87.6
60.0 71.4 71.7 72.9 94.2
60.0 61.5 64.8 60.9 88.8
60.0 64.5 66.9 62.4 98.4
60.0 55.8 61.8 57.3 91.5
60.0 57.6 63.3 59.7 85.5

120.0 111.9 102.0 116.7 112.2
120.0 118.2 109.2 127.8 119.4
120.0 103.5 105.9 102.6 111.3
120.0 112.2 115.8 110.7 113.4
180.0 178.5 177.6 178.2 185.7
180.0 182.7 180.6 185.1 192.9
180.0 176.7 179.4 177.9 182.7
180.0 167.1 167.7 168.9 174.6
240.0 244.8 237.0 243.3 255.3
240.0 251.7 241.5 250.5 263.1
240.0 254.4 239.7 251.1 270.6
240.0 246.3 237.3 243.0 260.4
300.0 296.4 310.2 300.0 273.0
300.0 297.9 307.5 301.5 277.2
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Table V. Quantification equations and accuracy provided by the optimized 4:4:1 PUNN network topologies as applied to the

determination of amikacin and paramomycin

Amikacin Paramomycin

Quantification equations ½Â�� ¼ 0:52 þ 2:29 ĥ1 � 1:28 ĥ2 þ 0:36 ĥ3 þ 2:80 ĥ4 ½P̂�� ¼ 0:25 � 1:97 ĥ1 þ 3:40 ĥ2 � 2:07 ĥ3 � 0:06 ĥ4

Transfer functions ĥ1 ¼ ðŜ�mÞ
0:39ðB̂�Þ0:50 ĥ1 ¼ ðŜ�mÞ

0:42ðB̂�Þ0:46ðĈ�Þ0:46ðt̂�mÞ
0:06

ĥ2 ¼ ðŜ�mÞ
0:92ðB̂�Þ0:52ðĈ�Þ0:86 ĥ2 ¼ ðŜ�mÞ

1:14ðĈ�Þ0:46

ĥ3 ¼ ðŜ�mÞ
2:11ðt̂�mÞ

0:45 ĥ3 ¼ ðĈ�Þ1:63ðt̂�mÞ
4:91

ĥ4 ¼ ðB̂�Þ3:87ðĈ�Þ1:49 ĥ4 ¼ ðB̂�Þ3:13

Effective links 14 14
SEPT 5.8% 5.8%
SEPG 8.2% 5.6%
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the dependent variable and the independent variable was the

type of model used for prediction. The comparisons were

made in terms of a critical level for Snedecor’s F; if the

significance level, a, was higher than this critical level, p, the

hypothesis of identical means was rejected. In the case of

amikacin, this hypothesis was not accepted because the

p-value is 0.749, higher than a standard a¼ 0.05, whereas in

the case of paramomycin, it was accepted because the p-value

was 0.000. Based on these results, a test of multiple com-

parisons of Tamhane was carried out for paramomycin.

Significant differences were found between PLS and ANN

models according to the p-values provided by the test: 0.000

in all comparisons. In view of these results, we selected the

PUNN model on the basis of its lower SEPG values and

simpler architecture (smaller effective links) than SUNN and

SPUNN models.

The simplicity of the proposed ANN models permits us to

derive straightforward quantitative equations for the deter-

mination of the concentration of each antibiotic using: (a) the

parameters estimated by the Weibull regression of the peak

and the class label provided by the cluster analysis; (b) the

optimized network weights and (c) the transfer functions

involved in the models. Table V shows the quantitative
Figure 4. Relative contribution of the produ

determination of the antibiotics provided by

paromomycin.
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equations corresponding to the proposed PUNN models for

both antibiotics.

4.3. Chemical interpretation of
ANN models
Taking into account that the proposed PUNN models

provided simple quantitative equations for the direct

determination of the contribution of each antibiotic to the

overlapping CZE peaks, quality chemical information could

be derived in order to explain the relationship between the

profile of the CZE peak (defined by the Weibull parameters)

and the determination of the antibiotic in the mixture by

using the proposed PUNN models. In this way, the value of

each PU transfer function involved that was affected by its

coefficient in the model was calculated over the scaled range

studied for the input variables, Ŝ�m; B̂
�; Ĉ� and t̂�m, and then

plotted one against another (see Figure 4).

4.3.1. Model for amikacin
From the quantification equation shown in Table V and from

the plots in Figure 4A, it follows that the value of ½Â��

depends mainly on the contribution of the PU functions ĥ1

and ĥ2 with opposite effects and also on the other PU
ct unit terms used for the quantitative

PUNN models. (A) amikacin and (B)
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functions but only at higher values of the scaled input

variable: for example the response of the function ĥ4 at higher

values of B̂� and Ĉ� is assigned to mixtures with higher

values of the [A] to [P] ratio. In short, this function made the

model provide more accurate results when modeling this

type of samples. It is also noteworthy that the contribution of

t̂�m was practically negligible because it was only involved in

the function ĥ3 which, on the other hand, is the one that least

contributes to the value of ½Â��. From these results, the direct

dependencies of Ŝ�m and B̂� parameters on ½Â�� is clear, that is

the value of the peak height and the degree of dispersion of

the analytical signal values from it, and both taking into

account their respective exponents in ĥ1 to a similar extent.

4.3.2. Model for paromomycin
By using the PUNN model for the determination of P in the

mixture, and from the quantification equation shown in

Table V and plots in Figure 4B, it follows that the value of ½P̂��

depends basically on the Ŝ�m and Ĉ� parameters, considering

the dependencies showed by the ĥ1 and ĥ2 functions in

Figure 4B. According to the relative values of the exponents

in the ĥ1 (basis function), a higher dependence can be

ascribed to Ĉ� parameter, which is associated to the inflection

points of the curve and defines the concavity and convexity

regions of the CZE peaks. Regarding the other PU functions,

only ĥ3 exerts a slight contribution at higher values of the

scaled input variable, which is related to mixtures with high

[P] to [A] ratios; as in the case of A, this function is of great

relevance for achieving a better modeling of these mixtures

by the proposed PUNN model.
5. CONCLUSIONS

As shown in this work, quantitative analysis in CZE is

possible even in the case of overlapped peaks by means of

ANNs designed by an evolutionary algorithm. Three ANN

strategies were evaluated for modeling the CZE data

provided from a set of samples containing single and

mixtures of analyte concentrations. The four parameters of

the Weibull curve fitted to the profile of the CZE peaks were

suitable as inputs for the three types of ANN, although the

predicted results can be improved with a prior LDA analysis

and using in some case the class label associated to each

sample as additional input. The calculated results indicated

that ANN models with SU, PU and SPU units as transfer

functions were a promising tool to resolve overlapped CZE

peaks with acceptable errors. The designed PUNN models

provided better accurate results, smaller network architec-

tures and more robust models and they were quite simple

and easier to interpret from a chemical point of view. In

summary, ANN is a powerful tool for resolving CZE

overlapped peaks while also allowing an important

reduction in analysis time because it avoids time consump-

tion by finding optimal conditions for the suitable CZE

resolution.

Acknowledgements
The authors gratefully acknowledge the subsidy provided by

the Spanish Inter-Ministerial Commission of Science and

Technology of the Ministry of Education and Science under
Copyright # 2007 John Wiley & Sons, Ltd.
the CTQ2007-63962 (Department of Analytical Chemistry,

University of Cordoba) and TIN2005-08386-C05-02 (Depart-

ment of Computer Science, University of Cordoba) Projects.

FEDER also provided additional funding. The research of

Pedro Antonio Gutierrez has been supported by FPU-

Predoctoral Program (Spanish Ministry of Education and

Science).
REFERENCES

1. van-Zomeren PV, Metting HJ, Coenegracht PMJ, de-Jong
GJ. Simultaneous resolution of overlapping peaks in
high-performance liquid chromatography and micellar
electrokinetic chromatography with diode array detec-
tion using augmented iterative target transformation
factor analysis. J. Chromatogr. A 2005; 1096: 165–176.

2. Vivo-Truyols G, Torres-Lapasio JR, van-Nederkassel
AM, vander-Heyden Y, Massart DL. Automatic program
for peak detection and deconvolution of multi-
overlapped chromatographic signals. Part II: Peak model
and deconvolution algorithms. J. Chromatogr. A 2005;
1096: 146–155.

3. Rodriguez-Cuesta MJ, Boque R, Rius FX, Vidal JLM,
Frenich AG. Development and validation of a method
for determining pesticides in groundwater from complex
overlapping HPLC signals and multivariate curve resol-
ution. Chemometr. Intell. Lab. Syst. 2005; 77: 251–260.

4. Wiberg K, Jacobsson SP. Parallel factor analysis of
HPLC-DAD [diode-array detection] data for binary mix-
tures of lidocaine and prilocaine with different levels of
chromatographic separation. Anal. Chim. Acta 2004; 514:
203–209.

5. Comas E, Gimeno RA, Ferre J, Marce RM, Borrull F, Rius
FX. Quantification from highly drifted and overlapped
chromatographic peaks using second-order calibration
methods. J. Chromatogr. A 2004; 1035: 195–202.

6. van-Zomeren PV, Darwinkel H, Coenegracht PMJ,
de Jong GJ. Comparison of several curve resolution
methods for drug impurity profiling using high-
performance liquid chromatography with diode-array
detection. Anal. Chim. Acta 2003; 487: 155–170.

7. Gross GM, Prazen BJ, Synovec RE. Parallel column liquid
chromatography with a single multi-wavelength absor-
bance detector for enhanced selectivity using chemo-
metric analysis. Anal. Chim. Acta 2003; 490: 197–210.

8. Fraga CG, Bruckner CA, Synovec RE. Increasing the
number of analyzable peaks in comprehensive two-
dimensional separations through chemometrics. Anal.
Chem. 2001; 73: 675–683.

9. Sanchez FC, Rutan SC, Garcia MDG, Massart DL. Resol-
ution of multicomponent overlapped peaks by the
orthogonal projection approach, evolving factor analysis
and window factor analysis. Chemometr. Intell. Lab. Syst.
1997; 36: 153–164.

10. Zhang F, Li H. Resolution of overlapping capillary elec-
trophoresis peaks by using chemometric analysis:
improved quantification by using internal standard.
Chemometr. Intell. Lab. Syst. 2006; 82: 184–192.

11. Zhang F, Li H. Resolution of overlapping capillary elec-
trophoresis peaks by using chemometric analysis:
quantification of the components in compound reserpine
tablets. Electrophoresis 2005; 26: 1692–1702.

12. Li H, Zhang F, Havel J. Quantification of analytes in
overlapping peaks from capillary electrophoresis using
multivariate curve resolution-alternating least squares
methods. Electrophoresis 2003; 24: 3107–3115.

13. Olazabal V, Prasad L, Stark P, Olivares JA. Application of
wavelet transforms and an approximate deconvolution
J. Chemometrics 2007; 21: 567–577
DOI: 10.1002/cem



Quantification of highly overlapping capillary electrophoresis peaks 577
method for the resolution of noisy overlapped peaks in
DNA capillary electrophoresis. Analyst 2004; 129: 73–81.

14. Chen AJ, Li CH, Gao WH, Hu ZD, Chen XG. Separation
and determination of active components in Schisandra
chinensis Baill. and its medicinal preparations by non-
aqueous capillary electrophoresis. Biomed. Chromatogr.
2005; 19: 481–487.

15. Chen AJ, Li CH, Gao WH, Hu ZD, Chen XG. Application
of non-aqueous micellar electrokinetic chromatography
to the analysis of active components in radix Salviae
miltiorrhizae and its medicinal preparations. J. Pharm.
Biomed. Anal. 2005; 37: 811–816.

16. Hervás C, Silva M, Serrano JM, Orejuela E. Heuristic
extraction of rules in pruned artificial neural networks
models used for quantifying highly overlapping chro-
matographic peaks. J. Chem. Inf. Comput. Sci. 2004; 44:
1576–1584.

17. Hervás C, Martı́nez AC, Silva M, Serrano JM. Improving
the quantification of highly overlapping chromato-
graphic peaks by using product unit neural networks
modeled by an evolutionary algorithm. J. Chem. Inf.
Model. 2005; 45: 894–903.

18. Garrido-Frenich A, Martinez-Galera M, Gil-Garcia MD,
Martinez-Vidal JL, Catasus M, Marti L, Mederos MV.
Resolution of HPLC-DAD highly overlapping analytical
signals for quantitation of pesticide mixtures in ground-
water and soil using multicomponent analysis and
neural networks. J. Liq. Chromatogr. Relat. Technol. 2001;
24: 651–668.

19. Li YB, Huang XY, Sha M, Meng XS. Resolution of over-
lapping chromatographic peaks by radial basis function
neural network. Sepu 2001; 19: 112–115.

20. Galeano-Diaz T, Guiberteau A, Ortiz JM, Lopez MD,
Salinas F. Use of neural networks and diode-array detec-
tion to develop an isocratic HPLC method for the
analysis of nitrophenol pesticides and related com-
pounds. Chromatographia 2001; 53: 40–46.

21. Zhang YX, Li H, Hou AX, Havel J. Artificial neural
networks based on principal component analysis input
selection for quantification in overlapped capillary elec-
trophoresis peaks. Chemometr. Intell. Lab. Syst. 2006; 82:
165–175.

22. Zhang F, Li H. Resolution of overlapping capillary elec-
trophoresis peaks by using chemometric analysis:
quantification of the components in compound reserpine
tablets. Electrophoresis 2005; 26: 1692–1702.

23. Zhang YX, Li H, Hou AX, Havel J. Artificial neural
networks based on genetic input selection for quantifi-
cation in overlapped capillary electrophoresis peaks.
Talanta 2005; 65: 118–128.

24. Sentellas S, Saurina J, Hernandez-Cassou S, Galceran
MT, Puignou L. Quantitation in multianalyte overlap-
ping peaks from capillary electrophoresis runs using
artificial neural networks. J. Chromatogr. Sci. 2003; 41:
145–150.
Copyright # 2007 John Wiley & Sons, Ltd.
25. Bocaz-Beneventi G, Latorre R, Farkova M, Havel J. Arti-
ficial neural networks for quantification in unresolved
capillary electrophoresis peaks. Anal. Chim. Acta 2002;
452: 47–63.

26. Schmitt M. On the complexity of computing and learning
with multiplicative neural networks. Neural Comput.
2001; 14: 241–301.

27. Martı́nez-Estudillo AC, Martı́nez-Estudillo FJ, Hervás-
Martı́nez C, Garcı́a-Pedrajas N. Evolutionary product
unit based neural networks for regression. Neural Netw.
2006; 15: 477–486.

28. Martı́nez-Estudillo AC, Hervás-Martı́nez C, Martı́nez-
Estudillo FJ, Garcı́a-Pedrajas N. Hybridation of evol-
utionary algorithms and local search by means of a
clustering method. IEEE Trans. Syst. Man Cybern. B
Cybern. 2006; 36: 534–546.

29. Duch W, Jankowsky N. Transfer functions: hidden possibi-
lities for better neural networks, in 9th European Sym-
posium on Artificial Neural Networks, (ESANN),
Brugge (Belgium), 2001, pp. 81–94.

30. Cohen S, Intrator N. Forward and backward selection in
regression hybrid network, in Third International Work-
shop on Multiplier Classifier Systems, 2002.

31. Cohen S, Intrator N. A hybrid projection-based and
radial basis function architecture: initial values and glo-
bal optimization. Pattern Anal. Appl. 2002; 5: 113–120.

32. Donoho D. Projection based in approximation and a
duality with kernel methods. Ann. Statist. 1989; 17:
58–106.

33. Friedman J. Multivariate adaptive regression splines
(with discussion). Ann. Statist. 1991; 19: 1–141.

34. Serrano JM, Silva M. Trace analysis of aminoglycoside
antibiotics in bovine milk by micellar electrokinetic
chromatography with laser induced fluorescence detec-
tion. Electrophoresis 2006; 27: 4703–4710.

35. Duda RO, Hart PE, Stork DG. Pattern Classification (2nd
edn). Wiley-Interscience: New York, USA, 2001.

36. Angeline PJ, Saunders GM, Pollack JB. An evolutionary
algorithm that constructs recurrent neural networks.
IEEE Trans. Neural Netw. 1994; 5: 54–65.

37. Yao X, Liu Y. A new evolutionary system for evolving
artificial neural networks. IEEE Trans. Neural Netw. 1997;
8: 694–713.
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